

SATELLITE DERIVED BATHYMETRY (SDB) FROM IMAGES OF THE SUCRE VRSS-2 SATELLITE

CMDR. DANIEL ROJAS CONTRERAS Msc. IN Hydrography CAT B IN MARINE CARTOGRAPHY AND DATA PROCESING

Promoting the overall development of nations through the use of spatial data and applications.

SCHEDULE

- ✓ Introduction
- ✓ Impact Benefit Relationships
- ✓ Sucre VRSS-2 satellite characteristics
- ✓ Procedures
- ✓ Results Case Study
- ✓ Future Projects
- ✓ Conclusions

BATHYMETRY PROJECT DERIVED FROM SATELLITE IMAGES IMPACT / BENEFIT

- **1. DETERMINATION OF DEPTHS IN NON-HYDROGRAPHED TOURIST AREAS;**
- 2. MARINE CARTOGRAPHY FOR NAVIGATION IN UNMAPPED AREAS
- 1. INFORMATION MANAGEMENT FOR THE ESTABLISHMENT OF POSSIBLE RECREATIONAL BOAT PORTS OR LAND FACILITIES IN SUPPORT OF TOURIST BOATS OR TOURIST DEVELOPMENTS.
- 2. KNOWLEDGE OF THE MARINE ENVIRONMENT TO SUPPORT GOVERNANCE MANAGEMENT DECISIONS;
- 3. GREATER COASTAL BATHYMETRY, WITH COMPLETE AND UPDATED COVERAGE,

Jotajana, Delta Amacuro - Venezuela. Camera HRC, MSS Sensor. Resolution: 3 m. Capture date: 01/04/2018. VRSS-2.

VRSS-2 SATELLITE SUCRE

TECHNICAL ASPECTS

LOCAL TIME OF THE ASCENDING NODE: 10:30 am. TYPE OF ORBIT: Sun Synchronous. REPETITION PERIOD (NADIR): 101 days. REVISITA PERIOD: 4 days with 35° roll. HEIGHT: 645,80 km WEIGHT: 1000 kg

HRC SENSOR

(High Resolution Camera) Radiometric Resolution: 10 bits Sweeping Width: 30 km

Spatial Resolution (m)	Spectral Bands	Spectral Ranges (nm)
1	PAN	500 - 800
3	MSS 1	450 - 520
3	MSS 2	520 - 590
3	MSS 3	630 - 690
3	MSS 4	770 - 890

IRC SENSOR (Infra Red Camera) Radiometric Resolution: 12 bits Sweeping Widht: 30 km

SWIR (SHORT WAVE INFRARED)

Spatial Resolution (m)	Spectral Bands	Spectral Ranges (nm)	
30	1	900 - 1100	
30 2		1180 - 1300	
30 3		1550 - 1700	

LWIR (LONG WAVE INFRARED)

Spatial Resolution (m)	Spectral Bands	Spectral Ranges (nm)	
60 1		10300-11300	
60	2	11500 - 12500	

MPORTANT STEPS IN THE SATELLITE BYPASS PROCEDURE INCLUDE:

- **PRETREATMENT**
- WATER SEPARATION
- SPATIAL FILTERING
- APPLICATION OF THE BATHYMETRY ALGORITHM
- IDENTIFICATION OF THE EXTINCTION DEPTH
- VERTICAL GEOREFERENCING

Optimization approach that assumes the vertically invariant water column. A subcategory of this is a relationship approach that derives bathymetry based on the log relationship (or record relationship) of two bands.

PENETRATION OF LIGHT. OCEANIC WATER

Note:

For an algorithm that can be used by the hydrographic community in GIS software, a relationship transformation algorithm based on an optimization approach provides a robust solution that does not require sampling the environment. However, this proposal allows the capture of data in the field through two methods for greater precision of the results.

IMAGE ANALYSIS PROCESS

DENTIFY LAND / WATER

SATELLITE DERIVED BATHYMETRY

GEOREFERENCING TO HYDROGRAPHIC ZERO

BLUE AND GREEN BAND ANALYSIS

APPLY THE ALGORITHM

Water-land separation process

SEPARATION THRESHOLD WATER - LAND +/- 220

BATHYMETRIC ALGORITHM

RASTER CALCULATOR LN(AZUL)/LN(VERDE)

$$\mathbf{z} = m_1 \left(\frac{\ln(L_{obs}(Banda_{azul}))}{\ln(L_{obs}(Banda_{verde}))} \right) - m_0$$

RASTER VALUE EXTRACTION

SURVEY AREA 10,5 km²

CONTROL POINTS

STATISTIC ANALYSIS

CALCULATION OF RELATION R²

The SDB estimates of the VRSS2 Sucre images, derived from the blue / green band relationship, exhibited a water attenuation extinction depth of 8.8 meters with a coefficient of determination $\mathbf{R}^2 = 0.9298$. When carrying out the respective modeling it was possible to show that the waters located north of Cumaná are highly dynamic affected mainly by the currents generated in the Gulf of Cariaco and by the action of the wind.

y= 159.64x-156.54 R²⁼ 0.9298

(159.64x{In(azul)/In(verde)}-156.54

SURVEY DATA 2011

DEPTHS OBTAINED FROM SATELLITE IMAGES

SURVEY COST

	Acustic	LIDAR (CZMIL)	SATELLITE SUCRE VRSS2
SURVEY (20 KM ²)	50.000	30.000	200
DURATION (HOURS PER KM ²)	140	1,6	0
PROCESSING (HOURS PER KM ²)	420	80	60
TOTAL COST(PER KM ²⁻) EUR	66.000	34.000	2000
TOTAL DURATION TOTAL(HOURS PER KM ²)	560	80	60

OTHER EXERCISES

VRSS2_MSS_0291_0327_20180301_L2B_1129181858944

PUERTO CABELLO

OTHER EXERCISES

VRSS-2_MSS_0278_0305_20181024_L2B_1129182911229

VISUALIZATION ISLA DE AVES

NEXT STEPS

Archipelago Aves (Aves de Sotavento) Total area approx. 72 Km²

Archipelago Aves (Aves de Barlovento) Total area approx. 67 Km²

Archipelago Los Roques Total area approx. 650 Km²

CONCLUSIONS

- BDS CAN BE OF GREAT HELP IN FILLING INFORMATION GAPS IN MAPPING AT A REASONABLE COST.
- BDS HAS GREAT POTENTIAL FOR EMPLOYMENT IN OUR COUNTRY WITH THE USE OF VRSS-2 SATELLITE IMAGES, GRAN MARISCAL ANTONIO JOSÉ DE SUCRE.
- BDS IS NOT THE IDEAL TECHNIQUE BUT IT IS SOMETHING, IN PLACES WHERE THERE IS NO BATHYMETRIC INFORMATION IT IS OF GREAT BENEFIT.
- □ THE PLACES WHERE GREATER PRECISION IS REQUIRED SHOULD BE SURVEYED WITH MBES OR LIDAR.
- □ THE BDS PROVIDES A GREAT ADVANCE AMONG THE COUNTRIES OF LATIN AMERICA AND THE CARIBBEAN IN THE USE OF THIS TOOL.

THANKS FOR YOUR ATTENTION